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Evolving neural network pattern classifiers

J.R. McDonnell, D.EK Waagen and W.C. Page
NCCOSC, RDT&E Div.

San Diego, CA

ABSTRACT

This work investigates the application of evolutionary programming for automatically configuring neural network
architectures for pattern classification tasks. The evolutionary programming search procedure implements a parallel
nonlinear regression technique and represents a powerful method for evaluating a multitude of neural network model
hypotheses. The evolutionary programming search is augmented with the Solis & Wets random optimization method
thereby maintaining the integrity of the stochastic search while taking into account empirical information about the
response surface. A network architecture is proposed which is motivated by the structures generated in projection pursuit
regression and the cascade-correlation learning architecture. Results are given for the 3-bit parity, normally distributed
data, and the T-C classifier problems.

1. INTRODUCTION

Dynamic artificial neural networks (DANNs) represent an alternative training methodology which not only
optimizes a weight set for a specified network architecture, but also allows the network architecture to be modified during
the training process. The necessity for this type of training generally results from the trial-and-error process undertaken by
the network designer on highly dimensioned data sets which lack obvious feature vectors. The usual objective of DANN'
training methodologies is to minimize an energy function that adequately describes the network topology as well as the
mean sum-squared pattern error. This type of training approach results in parsimonious network structures with either a
reduced number of redundant hyperplanes, minimized connectivity, or both. The benefits of the resulting networks include
reduced throughput times for real-time signal processing applications and potentially better generalization capabilities by
the avoidance of overfitting the training data.

The DANN training philosophy may be roughly broken down into two classes: (1) t that modify their
connectivity and (2) those that modify the number of hidden units. Representative examples of the first class of DANN
training algorithms include weight decay' and weight elimination2. Representative examples of the latter class of DANN
training algorithms include the dynamic node creation (DNC) algorithm3, an upgrade to the DNC algorithm by Hirose et
al.4 which also deletes units and the cascade-correlation (CC) learning architecturem. The CC training approach is unique
in that it fixes the input-to-hidden unit weights and only modifies the weights of the output units. The idea of adding
additional units to achieve better function approximations is similar to projection pursuit regression6 techniques.

The use of evolutionary search methods is becoming prevalent as a network construction technique. Network
architectures have been 'evolved" during the training process using genetic algorithms 7, evolutionary strategies, and
evolutionary programming'. Both the genetic algorithm and evolutionary strategy approaches incorporated the
backpropagation algorithm for weight adjustment while the evolutionary programming approach implemented a hybrid
stochastic search method.

The goal of this investigation is to determine the feasibility of an evolutionary search method, evolutionary
programming, for the automatic design of a general feedforward neural network architecture. These architectures have
three types of units (input, hidden, and output), as opposed to three types of layers. This distinction is made since each
additional hidden unit may be connected to all of the previous units (both input and hidden) in the network. Citing the
benefits of reduced connectivity given above, the resulting structures will not necessarily be fully connected in a CC sense.
The next section briefly discusses the projection pursuit and CC classifier construction techniques. Note that other
constructive approaches such as adaptive kernel estimatorsi0 are equally applicable for classifier determination. Finally, a
hybrid learning architecture is proposed which, using evolutionary programming training methods, incorporates structural
aspects of both the CC and projection pursuit architectures.



2. CLASSIFIER CONSTRUCTION MODELS

2.1 A connectionist representation of projection pursuit

Projection pursuit regression (PPR) structures are nonparametric models resulting from a successive refinement
training process. Pattern classification using this regression technique has been demonstrated by Flick et aL 11 . PPR
generates an approximation toffx) as a sum of empirically determined smooth functions g of linear combinations of the
input vector as described by

X

f.(X) = Zg 1 (airx)
Jul

Training progresses by using a successive refinement concept to incrementally determine a ridge function gi(aix) with

corresponding unit vector a, which minimizes

Er g.(a:X)2

where r. represents the current set of residuals. Flick et al 1 point out that one problem with PPR is the inability to backfit
the data by "readjusting the ridge functions used in earlier projections." A connectionist view can be taken of this
regression technique with the resulting three-layer architecture illustrated in Fig. 1.

X 2  g n
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Fig. 1. A connectionist representation of the projection pursuit regression function.

2.2 The cascade-correlation algorithm

The successive refinement technique employed in PPR is similar to the construction method used in the CC
learning architecture. The cascade-correlation learning architecture adds hidden units as necessary in an effort to minimize
the residual errors. Significant differences between the CC and PPR algorithms are that the cascaded nodes can result in
more complex nonlinear mappings whereas the PPR method selects an appropriate nonlinear mapping (and unit vector) to
minimize the residuals at each generation. In the CC learning architecture a candidate pool of hidden units are individually
trained to maximize the covanance between each units output and the residual output error over all output units. Once
trained, the "best" hidden unit is incorporated into the network with fixed input weights with subsequent weight
modifications occurring on the output units. The CC mapping is described by the network equations



output unit: x, = We for j>m+n ; hidden unit: x, = 1 wjx for j>m

where wi, orresponds to the Weight matrix and m and n represent the size of the input vector and number of hidden units,
respectively. For feedforward architectures, the weight matrix is nearly upper triangular. The CC architecture is shown in
Fig. 2.
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Fig. 2. The cascad rrelation architecture. The boxes indicate weights which
are frozen, only the output weights are modified.

The difference between the CC and PPR function approximation technique previously discussed becomes more
evident if the output unit equation is rewritten with separate summations for the input and hidden units and expanded
accordingly

Ys = Wei + Y, WeJ

yJ= z8(WUt+Wv*Lj Ea,+1 a +...+Wu.+nEsxa,.nJ

i=1,i+A

where the subscript on g has been dropped signifying the activation functions are the same (this is not always the case).
Instead of the linear combination of nonlinear mappings of projections of the input vector x as generated using the PPR
algorithm, the CC architecture yields a nonlinear mapping of a weighted linear combination of nonlinear mappings of
projections of the input vector x. As the number of hidden units n increases, more complex nonlinear manifolds result In
comparison to the PPR mapping, this capability may yield better pattern classification results on highly non-convex data
sets. This deficiency of PPR with respect to its ability to achieve highly nonlinear mappings is also pointed out by Huber12

who states that PP is poorly suited to deal with highly nonlinear structures."



3. EVOLUTIONARY PROGRAMMING

Evolutionary programming (EP) provides a powerful framework for simultaneously evaluating neural network
models and their paraeterizations. Like PPR methods, the EP search strategy can be computationally demanding. EP is a
systematic, multi-agent, stochastic search technique proposed by Fogel et al 13. EP has been used to generate finite state
machines 13, auto-regressive moving average (ARMA) models 14, probability density mixture models15, and recurrent
perceptrons16.

The EP paradigm can be described by the following algorithm14

i. Form an initial population P - fxox1 x2 ... x2j€.1] of size 2N by randomly initializing each

n-dimensional solution vector x,. A user specified search domain x, e [xi.,xx r may be
imposed

2. Assign a cost to each element xi in the population based on the associated objective

function J, -Wxi) s.L t0:R" -+ R
3. Reorder the population in descending order bawd on the number of wins generated from a

stochastic competition process Wins are generated by rando..ly selecting other members
in the population x, and incrementing the win counter w, If J, < J-

4. Generate offspring (Xl¢ .... x2N_)from the N highest ranked elements (x0 .... xN..1) in the

population by modifying each element x. E xi with a random perturbation
• ~N(O, S -Ji + 8,) such that x,+l~ f x. + &c..

5. Loop to step 2.

The Bohachevsky function f(x)=x1
2 +2x -O.3cos(3xr,)-O.4cos(4mnr)+0.7 is proposed as a response surface to

demonstrate the benefits of EP as a global optimization strategy. The transcendental terms generate many local minima

within the interval x E[-l,lf while the quadratic terms dominate the surface structure outside of this interval. A unique
global minimum exists at x=(Oi 0). A trajectory of the best population member at each generation during a search on the
Bohachevsky surface is superimposed on the Bohachevsky contours as shown in Fig. 4. Since the search is stochastic, it is
expected that this trajectory will vary for every trial.
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Fig. 4. Trajectory of the best point in the population during the evolutionary search
process on the Bohachevsky surface.



2.3 The neural network classifier model

A feedforward neural network may be considered as a functional mapping f:X -+ Y where X eR', Y eR"
subject to a topology T(N.C) as defined by the neuron inter-connectivity C over the number of availablec neurons N. Similar
to the PPR algorithm, the mapping network may even contain variable types of activation functions g so that g e G where G
is the set of possible activation functions. Motivated by the PPR and CC structures, as well as the better generalization
capabilities of parsimonious stucturs a general structure shown such as that shown in Fig. 3(a) is proposed as a pattern
classifier. It is the intention of this work to generate such architectures using the evolutionary programming search
strategy.

Differences between the proposed architecture and the CC structure include the ability to modify all connection
weights throughout the learning process. This is different than minimizing the residuals with each additional hidden units
as accomplished in the CC learning architecture. To achieve less than full connectivity, a connectivity array C is specified
as shown in Fig. 3(b) where the row index corresponds to "from" units and the each column index corresponds to *to" units

(i.e., Cffrom][toJ). If each connectivity-weight product is combined as a, = c. -w4,,then the nonlinear mapping is the

similar to the CC mapping (assuming c,=]) and can be described as

Y S = 91 s a~xi+ O..jjg,+j 2 a,.,jx wl• -.. +a,+,,sg,+, (Z ai..+,Xi
N.=JK•l / = jj

where variable activation functions have been incorporated. While activation functions could easily be incorporated as an
additional evolutionary search parameter, the results presented in this work maintained the same activation functions on the
output and hidden units since this is a preliminary investigation. Training must not only determine the network weights,
but also the neuron inter-connectivity. This problem requires an approach which address NP-hard optimization problems.
The technique employed in this investigation is the evolutionary programming method. It may be argued that desired
portions of the network are needlessly altered by modifying all of the free parameters during the search process. As will be
seen in Section 4, the evolutionary search is conducted in a manner that does not simultaneously effect all of the network
parameters. It is expected that surviving members of the population will retain beneficial structure and parameters.
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Fig. 3. (a) A general feedforward network architecture and (b) its associated connectivity matrix.



It is interesting to note that evolutionary search strategies are generally robust with respect to a broad class of
problems. Nontrivial constraints can be incorporated into the objective function in an effort to take advantage of a priori
knowledge about the problem domain. It should also be noted that evolutionary optimization strategies tend to be slower
than more deterministic optimization approaches. However, their "time complexity quite often grows in a linear manner
together with the problem size 17.

4. EVOLVING ANN PATTERN CLASSIFIERS

As previously stated, EP provides a powerful relaxation search. To improve search efficiency, algorithm 1 of
Solis&Wets1 has been embedded in the search process in parallel with the offspring method normally incorporated in EP.
A connection modification mechanism is implemented by changing the state of a randomly selected synapse. For example,
if CfiJ['j - I then the bit is flipped to 0. Likewise, if Cfiy]f] = 0 then the bit is flipped to 1. The structure modification
procedure must be employed with caution. Frequent structural modifications, say every generation, will cause the network
to evolve with a high MSE and no connections. This happens when learning is slow to occur with respect to the frequency
of structural modifications. As a result, the connection matrix is modified only every K generations (K=5-1O for this work).
These changes are manifested in the evolutionary search strategy by replacing step 4 in the EP algorithm above with

4. Generate offspring
i. Modfy the N highest ranked elements (x0 .... xN..)) using the Soils & Wets algorithm I
II. Perturb the weight set using the EP scheme discussed above and modify the connectivity

structure of (x .... x2,.1 ) by flipping a randomly selected bit in the connectivity matrix
every K generations.

By replacing the parent networks with offspring generated using the Solis & Wets algorithm, it is guaranteed that the

objective function will be decreasin& that is AJ1 = Ji(k + 1)- J.(k) < 0. New structures are generated in the offspring with
"good" structures being propagated at the parent level. A relatively small population size (N-1O with single offspring) is
used in this investigation. A single generation of the evolutionary search procedure is shown in Fig. 5.

The cost function employed in this study is a heuristic based on Akaike's19 information criterion (AIC). This
information criterion address model order by incorporating the number of free parameters to be determined for a particular
model selection along with the maximum likelihood estimate. Other information criterion such as the minimum description
length (MDL) could also have been used for the objective function.

The AIC for an autoregressive moving-average (ARMA) model with AR order p and MA order q as described by

AIC(p,q) = Plog(&)+ 2(p+q)

has been modified for use as the objective function so that

AJC(N,) = Plog(&2) + 2N,

where P is the effective number of observations or patterns and N, is the number of connections. Lower AIC values indicate
better models. Thus, the goal of the evolutionary search process is to minimize AIC(N¢) by searching over the weight and
connectivity spaces. The maximum likelihood estimate of the variance is determined in the usual way2°

p 
i

where tp. is the desired target and o.1 is actual output of neuron i for input pattern p. For the present study, it is suspected
that this information criterion insuciently addresses the number of free parameters utilized in the network. Nevertheless,
it is employed without regard for the number of hidden units implemented in the network.
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Fig. S. One generation of the hybrid multi-agent stochastic search. This method
is a combination of both EP and the Solis&Wets technique.

S. RESULTS

S.1 The parity problem

The parity problem serves as a popular benchmark since the mapping is not linearly separable. Tests were
conducted for the three-bit parity problem which consists of eight exemplars. Sigmoidal activation functions were
incorporated in the network. Ten parent networks were employed, each having a single offspring. The networks were
initialized to be fully connected at the start of the run to five hidden units. An example evolutionary optimization run is
shown in Fig. 6 which shows the number of connections and MSE of the network with the least cost at each generation.
Even after the MSE reaches an acceptable level the optimization procedure continues to reduce the number of connections.
It is interesting to observe which part of the search yields the best network at each generation. For the run shown in Fig. 6,
Fig. 7 gives the index of the network with the lowest cost. Indices below 10 indicate the Solis & Wets algorithm generates
better nets and indices equal to or greater than 10 illustrate that the EP weight perturbation/connection modification
strategy generates lower cost nets. It should be noted that the network generated in this run is essentially a two-layer
network with shortcut connections from the input units to the hidden units as shown in Fig. 8. Recall that a traditional
fully-connected architecture with a single hidden layer would result in 16 connections whereas the network shown in Fig. 8
has 13.
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60 me 0.225 18 - -

0.200 16
40 -- .

0.175 14 --. . . m . . . .
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Fig. 6. The evolutionary optimization procedure applied Fig. 7. The NN index indicates the network rank in
to the 3bit parity problem. The network with the lowest the population. The rank of the network with the
cost is shown at each generation. lowest cost is shown at each generation.
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Fig. 8. Resulting network configuration for 3bit parity problem.

5.2 A two-class Gaussian problem

Let the functionffx,y) be jointly normal as denoted by N(/p., .A small sample of 50 observations is taken
from class I as defined by N(-1.5,0.1,1) and class 2 as defined by r(1.5,0,1,1), respectively. Using sigmoidal activation
functions, a network was evolved to distinguish between the two classes given a single (zy) observation. Again, this
problem is of academic interest due to its nonlinear separability requirement. A modification was made in the evolutionary
learning procedure for this mapping. Since the Solis & Wets method is a powerful random optimization technique in its
own right, it was used to generate offspring from (Solis & Wets) modified parent networks in lieu of generating offspring in
the traditional EP fashion. The EP framework (i.e. competitive annealing) was still used to retain good network structures.

The cost and MSE of the best network at each generation is shown in Fig. 9. Fig. 10 shows the index of the best
network at every generation. Using the scheme described above, the offspring networks will always be equivalent to or
better than the parent networks unless the connectivity structure is modified. The network was initially fully connected to
10 hidden units (88 connections). After 5000 generations only 38 connections remained with a MSE=0.0003. The
resulting configuration is shown in Fig 11. Fig. 12 shows the limited number of samples from each class superimposed on
the contour plot. Duda and Hart21 give more determinstic methods for formulating discriminants if normal densities are
assumed.
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Fig. 9. Evolutionary optimization for a two-class Fig. 10. The network with the lowest cost at each
Gaussian data set. generation. Networks 1-10 and 11-20 correspond

to the parent and offspring networks, respectively.
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Fig. 11. The resulting network for the two-clan FMg, 12. The two classes of data superimposed on a

Ganssim problem after 500 generations. The contour plot of the decision surface. The '+' class bas
z's Indicate connections whereas the o's indicate an output value of 1 and the 'o' class has an output
links which am not connected. Note units 9 and value of 0.

12 have not been incorporated.

5.3The T-C dasif'.r

The final set of computer experiments investigates the classification of binary T-C images which have different
scaling and rotation as shown in Fig. 13. 71e eight 25 bit IT" patterns were designated as a separate class from the eight 25
bit 'C' patterns. Starting with a population of fulfly-connected networks with 10 hidden units, it generally took less than 500
generations to evolve a network which distinguishes between the given Or" and "C" patterns. Fig. 14 shows the
evolutionary optimizaton process and Fig, 15 shows the resulting network. Since the center pixel is always 1, it is
interesting to n~te that the input from this pixel was not disconnected as it does not provide any discriminatory information
between the two patterns. It is speculated that this probably would occur with an increased number of learning generations.
For the network shown in Fig. 14, the number of connections was reduced roughly 11% (from 341 to 302). However the
MSE appears acceptable within the short number of generations. Most of the trials generated an 11-130; reduction in 500
generations.

rig. 13. Binary T-C patterns rotated and scaled on a 5,5 grid.
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Fig. 14. Evolutionary optimization for the T-C patterns Fig. 15. The ranking of the best network in the
shown in Fig. 13. Training was arbitrarily stopped at population at each generation. As in the previous
500 generations. It appears that the cost function is section a dual Solis & Wets approach was used to both
still being minimized by disconnecting neurons. replace the parents and generate offspring.
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Fig. 16. TIe evolved network for solving the T-C pattern problem given in Fig. 13. It is very likely that additional
link would have been disconnected given more learning generations.

6. CONCLUSION

The network designer imposes certain constraints in selecting a network architecture before training. These
constraints are manifested in the topology which describes the inter-neuron connections, the number of neurons and the
activation function. Once the network architecture is arbitrarily chosen, a weight set is found which optimizes the model
for the desired mapping. Constructive techniques such as projection pursuit regression and cascade-correlation
architectmes serve as a means to relax the constraints imposed by the designer. The global optimization capabilities of
evolutionary search methods can be used to generate subsets of cascade-correlation style architectures by simultaneously
searching over weight and neuron connectivity spaces. Since these techniques are stochastic and global in nature, once
good solutions are found they may be optimized using local methods.

The evolutionary optimization approach outlined in this paper is extremely versatile. Although static activation
functions were employed for each neuron, changing the activation function did not require modification of the optimization
code. SpurioLs connections normally generated by evolutionary construction of networks were not observed. Reasonable
results were consistently found for the types of patterns classified in this work even though a small number of parent
networks where used. Additional work will ascertain the better generalization capabilities, if any, achieved using



parsimonious structures generated by this approach. Further work will also apply this technique to more difficult mappings

such as the two-spiral classification problem5 as well as classification problems of Naval interest.
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